Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.
نویسندگان
چکیده
PREMISE OF THE STUDY Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. METHODS We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. KEY RESULTS We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. CONCLUSIONS To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning.
منابع مشابه
Simulation of the climate change impact on monthly runoff of Dez watershed using IHACRES model
Identification and analysis of flow fluctuations in consequences of climate change is one of the most important factors in water resources management planning and this is vital especially in areas where large crowds are engaged in agriculture. Dez watershed, as an agricultural hub in the country, is one of areas that river flow fluctuations caused by climate change can affect a large population...
متن کاملClimate change impacts on spatial-temporal variations of reference evapotranspiration in Iran
Global warming due to greenhouse effect is expected to cause major changes in climate of some regions. The change of climate is likely to have a profound effect on hydrological cycle. Evapotranspiration (ET, as the major component of hydrological cycle, will affect crop water requirement and future planning and management of water resources. This study was conducted to investigate climate chang...
متن کاملPredicting the Effect of Climate Change on the Distribution of Wild Relatives of the Potato Family (Solanaceae) in Iran with Emphasis on Food Security
The Solanaceae family with 49 species of 10 genera is one of the important nutritional, economical, medicinal and ornamental families in which six genera of them are classified in the group of wild relatives. Predicting the effect of climate change on the distribution of plant species is important for their management and conservation. In this study, the effects of climate change on this family...
متن کاملGenetic diversity within the Iranian spiny-tailed lizards and predicting species distribution in climate change conditions
There are different methods to investigate the effects of climatic fluctuations on the biota, two of which, molecular phylogeography and SDM, are the most useful tools to trace the past climate induced modifications on species’ geographic distributions. In this study, seven samples were collected from the species distribution range in Iran for the purpose of measuring the genetic variation with...
متن کاملStudy of Current and Future Meteorological Drought Conditions using the CMIP5 Model Under RCP scenarios
Reducing or increasing the climate parameters such as temperature and rainfall as a result of the climate change process, causes a variety of droughts. In this study, the effect of climate change on meteorological drought in Yazd province is investigated. For this purpose, the drought time series were determined in two historical periods (1961-2005) and the future (2017-2100) by SPI and SPEI. H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2016